Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Cells ; 13(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38667332

RESUMEN

A deficiency in the shortest dystrophin-gene product, Dp71, is a pivotal aggravating factor for intellectual disabilities in Duchenne muscular dystrophy (DMD). Recent advances in preclinical research have achieved some success in compensating both muscle and brain dysfunctions associated with DMD, notably using exon skipping strategies. However, this has not been studied for distal mutations in the DMD gene leading to Dp71 loss. In this study, we aimed to restore brain Dp71 expression in the Dp71-null transgenic mouse using an adeno-associated virus (AAV) administrated either by intracardiac injections at P4 (ICP4) or by bilateral intracerebroventricular (ICV) injections in adults. ICP4 delivery of the AAV9-Dp71 vector enabled the expression of 2 to 14% of brain Dp71, while ICV delivery enabled the overexpression of Dp71 in the hippocampus and cortex of adult mice, with anecdotal expression in the cerebellum. The restoration of Dp71 was mostly located in the glial endfeet that surround capillaries, and it was associated with partial localization of Dp71-associated proteins, α1-syntrophin and AQP4 water channels, suggesting proper restoration of a scaffold of proteins involved in blood-brain barrier function and water homeostasis. However, this did not result in significant improvements in behavioral disturbances displayed by Dp71-null mice. The potential and limitations of this AAV-mediated strategy are discussed. This proof-of-concept study identifies key molecular markers to estimate the efficiencies of Dp71 rescue strategies and opens new avenues for enhancing gene therapy targeting cognitive disorders associated with a subgroup of severely affected DMD patients.


Asunto(s)
Encéfalo , Dependovirus , Distrofina , Proteínas de la Membrana , Proteínas Musculares , Animales , Masculino , Ratones , Acuaporina 4/metabolismo , Acuaporina 4/genética , Conducta Animal , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Distrofina/metabolismo , Distrofina/genética , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Ratones Endogámicos C57BL , Ratones Noqueados , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología
2.
Nat Commun ; 14(1): 8504, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38148337

RESUMEN

Forward genetic screens of mutated variants are a versatile strategy for protein engineering and investigation, which has been successfully applied to various studies like directed evolution (DE) and deep mutational scanning (DMS). While next-generation sequencing can track millions of variants during the screening rounds, the vast and noisy nature of the sequencing data impedes the estimation of the performance of individual variants. Here, we propose ACIDES that combines statistical inference and in-silico simulations to improve performance estimation in the library selection process by attributing accurate statistical scores to individual variants. We tested ACIDES first on a random-peptide-insertion experiment and then on multiple public datasets from DE and DMS studies. ACIDES allows experimentalists to reliably estimate variant performance on the fly and can aid protein engineering and research pipelines in a range of applications, including gene therapy.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Ingeniería de Proteínas , Mutación , Simulación por Computador
3.
Mol Ther Methods Clin Dev ; 31: 101107, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37868206

RESUMEN

Most inherited retinal dystrophies display progressive photoreceptor cell degeneration leading to severe visual impairment. Optogenetic reactivation of inner retinal neurons is a promising avenue to restore vision in retinas having lost their photoreceptors. Expression of optogenetic proteins in surviving ganglion cells, the retinal output, allows them to take on the lost photoreceptive function. Nonetheless, this creates an exclusively ON retina by expression of depolarizing optogenetic proteins in all classes of ganglion cells, whereas a normal retina extracts several features from the visual scene, with different ganglion cells detecting light increase (ON) and light decrease (OFF). Refinement of this therapeutic strategy should thus aim at restoring these computations. Here we used a vector that targets gene expression to a specific interneuron of the retina called the AII amacrine cell. AII amacrine cells simultaneously activate the ON pathway and inhibit the OFF pathway. We show that the optogenetic stimulation of AII amacrine cells allows restoration of both ON and OFF responses in the retina, but also mediates other types of retinal processing such as sustained and transient responses. Targeting amacrine cells with optogenetics is thus a promising avenue to restore better retinal function and visual perception in patients suffering from retinal degeneration.

5.
Sci Adv ; 9(31): eadg8163, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531424

RESUMEN

The anatomical differences between the retinas of humans and most animal models pose a challenge for testing novel therapies. Nonhuman primate (NHP) retina is anatomically closest to the human retina. However, there is a lack of relevant NHP models of retinal degeneration (RD) suitable for preclinical studies. To address this unmet need, we generated three distinct inducible cynomolgus macaque models of RD. We developed two genetically targeted strategies using optogenetics and CRISPR-Cas9 to ablate rods and mimic rod-cone dystrophy. In addition, we created an acute model by physical separation of the photoreceptors and retinal pigment epithelium using a polymer patch. Among the three models, the CRISPR-Cas9-based approach was the most advantageous model in view of recapitulating disease-specific features and its ease of implementation. The acute model, however, resulted in the fastest degeneration, making it the most relevant model for testing end-stage vision restoration therapies such as stem cell transplantation.


Asunto(s)
Degeneración Retiniana , Animales , Humanos , Degeneración Retiniana/terapia , Retina , Células Fotorreceptoras Retinianas Bastones , Epitelio Pigmentado de la Retina , Primates
6.
Adv Exp Med Biol ; 1415: 117-123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440023

RESUMEN

Gene therapy is a potential cure for several inherited retinal dystrophies, and adeno-associated virus (AAV) has emerged as a vector of choice for therapeutic gene delivery to the retina. However, prior exposure to AAVs can cause a humoral immune response resulting in the presence of antibodies in the serum, which can subsequently interfere with the AAV-mediated gene therapy. The antibodies bind specifically to a serotype but often display broad cross-reactivity. A subset of these antibodies called neutralizing antibodies (NABs) can render the AAV inactive, thereby reducing the efficacy of the therapy. The preexisting NAB levels against different serotypes vary by species, and these variations need to be considered while designing studies. Since large animals often serve as preclinical models to test gene therapies, in this review we compile studies reporting preexisting NABs against commonly used AAV serotypes in humans and large animal models and discuss strategies to deal with NABs.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Animales , Humanos , Dependovirus/genética , Serogrupo , Vectores Genéticos/genética , Terapia Genética/métodos , Modelos Animales
7.
Appl Clin Genet ; 16: 111-130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274131

RESUMEN

Owing to their small size and safety profiles, adeno-associated viruses (AAVs) have become the vector of choice for gene therapy applications in the retina. In addition to the naturally occurring AAVs, several engineered variants with enhanced properties are being developed for experimental and therapeutic applications. Nonetheless, there are still some challenges impeding successful application of AAVs for a broader range of retinal gene therapies. The small size of AAV particles ensures efficient tissue transduction but also limits the packaging capacity to a few kilobases. Further, AAV's ability to cross retinal barriers is still an obstacle to pan-retinal transduction of the outer retina with tolerable doses. Lastly, despite overall safety, there have been recent reports of immune responses to AAVs in the eye. Hence, evaluation and prediction of immune responses to AAVs has come to be considered an integral part of future clinical success. This review focuses on the use of AAV in clinical trials for retinal diseases, and discusses developments of variants and novel strategies to overcome immune responses to AAVs.

8.
Nat Nanotechnol ; 18(6): 667-676, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37012508

RESUMEN

Remote and precisely controlled activation of the brain is a fundamental challenge in the development of brain-machine interfaces for neurological treatments. Low-frequency ultrasound stimulation can be used to modulate neuronal activity deep in the brain, especially after expressing ultrasound-sensitive proteins. But so far, no study has described an ultrasound-mediated activation strategy whose spatiotemporal resolution and acoustic intensity are compatible with the mandatory needs of brain-machine interfaces, particularly for visual restoration. Here we combined the expression of large-conductance mechanosensitive ion channels with uncustomary high-frequency ultrasonic stimulation to activate retinal or cortical neurons over millisecond durations at a spatiotemporal resolution and acoustic energy deposit compatible with vision restoration. The in vivo sonogenetic activation of the visual cortex generated a behaviour associated with light perception. Our findings demonstrate that sonogenetics can deliver millisecond pattern presentations via an approach less invasive than current brain-machine interfaces for visual restoration.


Asunto(s)
Expresión Génica Ectópica , Corteza Visual , Neuronas/metabolismo , Retina , Visión Ocular
9.
Artículo en Inglés | MEDLINE | ID: mdl-36987583

RESUMEN

Since their discovery over 55 years ago, adeno-associated virus (AAV) vectors have become powerful tools for experimental and therapeutic in vivo gene delivery, particularly in the retina. Increasing knowledge of AAV structure and biology has propelled forward the development of engineered AAV vectors with improved abilities for gene delivery. However, major obstacles to safe and efficient therapeutic gene delivery remain, including tropism, inefficient and untargeted gene delivery, and limited carrying capacity. Additional improvements to AAV vectors will be required to achieve therapeutic benefit while avoiding safety issues. In this review, we provide an overview of recent methods for engineering-enhanced AAV capsids, as well as remaining challenges that must be overcome to achieve optimized therapeutic gene delivery in the eye.

10.
Sci Adv ; 8(42): eabm4295, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36260685

RESUMEN

Accumulation of the microtubule-associated protein Tau is linked to neuronal cell death in tauopathies, but how intraneuronal Tau levels are regulated in health and disease remains unclear. Here, we show that conditional inactivation of the trafficking adaptor protein Numb in retinal ganglion cells (RGCs) increases Tau levels and leads to axonal blebbing, which is followed by neuronal cell loss in aged mice. In the TauP301S mouse model of tauopathy, conditional inactivation of Numb in RGCs and spinal motoneurons accelerates neurodegeneration, and loss of Numb in motoneurons also leads to precocious hindlimb paralysis. Conversely, overexpression of the long isoform of Numb (Numb-72) decreases intracellular Tau levels and reduces axonal blebbing in TauP301S RGCs, leading to improved electrical activity in cultured neurons and improves performance in a visually guided behavior test in vivo. These results uncover Numb as a key regulator of intracellular Tau levels and identify Numb-72 as a potential therapeutic factor for tauopathies.


Asunto(s)
Tauopatías , Ratones , Animales , Tauopatías/genética , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Modelos Animales de Enfermedad , Células Ganglionares de la Retina/metabolismo , Axones/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo
11.
Cell Rep Methods ; 2(8): 100268, 2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-36046629

RESUMEN

We developed a multi-unit microscope for all-optical inter-layers circuits interrogation. The system performs two-photon (2P) functional imaging and 2P multiplexed holographic optogenetics at axially distinct planes. We demonstrated the capability of the system to map, in the mouse retina, the functional connectivity between rod bipolar cells (RBCs) and ganglion cells (GCs) by activating single or defined groups of RBCs while recording the evoked response in the GC layer with cell-type specificity and single-cell resolution. We then used a logistic model to probe the functional connectivity between cell types by deriving the "cellular receptive field" describing how RBCs impact each GC type. With the capability to simultaneously image and control neuronal activity at axially distinct planes, the system enables a precise interrogation of multi-layered circuits. Understanding this information transfer is a promising avenue to dissect complex neural circuits and understand the neural basis of computations.


Asunto(s)
Holografía , Ratones , Animales , Holografía/métodos , Fotones , Células Bipolares de la Retina , Optogenética/métodos
12.
Ophthalmic Res ; 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36103843

RESUMEN

The recent approval of voretigene neparvovec (Luxturna®) for patients with biallelic RPE65 mutation-associated inherited retinal dystrophy with viable retinal cells represents an important step in the development of ocular gene therapies. Herein, we review studies investigating the episomal persistence of different recombinant adeno-associated virus (rAAV) vector genomes and the pre-clinical and clinical evidence of long-term effects of different RPE65 gene replacement therapies. A targeted review of articles published between 1974 and January 2021 in Medline®, Embase®, and other databases, was conducted, followed by a descriptive longitudinal analysis of the clinical trial outcomes of voretigene neparvovec. Following an initial screening, 14 publications examining the episomal persistence of different rAAV genomes and 71 publications evaluating gene therapies in animal models were included. Viral genomes were found to persist for at least 22 months (longest study follow-up) as transcriptionally active episomes. Treatment effects lasting almost a decade were reported in canine disease models, with more pronounced effects the earlier the intervention. The clinical trial outcomes of voretigene neparvovec are consistent with pre-clinical findings and reveal sustained results for up to 7.5 years for the full-field light sensitivity threshold test and 5 years for the multi-luminance mobility test in the Phase I and Phase III trials, respectively. In conclusion, the therapeutic effect of voretigene neparvovec lasts for at least a decade in animal models and 7.5 years in human subjects. Since retinal cells can retain functionality over their lifetime after transduction, these effects may be expected to last even longer in patients with a sufficient number of outer retinal cells at the time of intervention.

13.
Pharmaceutics ; 14(9)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36145721

RESUMEN

Inherited retinal diseases (IRDs) are a leading cause of blindness in industrialized countries, and gene therapy is quickly becoming a viable option to treat this group of diseases. Gene replacement using a viral vector has been successfully applied and advanced to commercial use for a rare group of diseases. This, and the advances in gene editing, are paving the way for the emergence of a new generation of therapies that use CRISPR-Cas9 to edit mutated genes in situ. These CRISPR-based agents can be delivered to the retina as transgenes in a viral vector, unpackaged transgenes or as proteins or messenger RNA using non-viral vectors. Although the eye is considered to be an immune-privileged organ, studies in animals, as well as evidence from clinics, have concluded that ocular gene therapies elicit an immune response that can under certain circumstances result in inflammation. In this review, we evaluate studies that have reported on pre-existing immunity, and discuss both innate and adaptive immune responses with a specific focus on immune responses to gene editing, both with non-viral and viral delivery in the ocular space. Lastly, we discuss approaches to prevent and manage the immune responses to ensure safe and efficient gene editing in the retina.

14.
CRISPR J ; 5(3): 377-388, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35506982

RESUMEN

Inherited retinal dystrophies (IRDs) are a heterogeneous group of diseases that affect more than 2 million people worldwide. Gene therapy (GT) has emerged as an exciting treatment modality with the potential to provide long-term benefit to patients. Today, gene addition is the most straightforward GT for autosomal recessive IRDs. However, there are three scenarios where this approach falls short. First, in autosomal dominant diseases caused by gain-of-function or dominant-negative mutations, the toxic mutated protein needs to be silenced. Second, a number of IRD genes exceed the limited carrying capacity of adeno-associated virus vectors. Third, there are still about 30% of patients with unknown mutations. In the first two contexts, precise editing tools, such as CRISPR-Cas9, base editors, or prime editors, are emerging as potential GT solutions for the treatment of IRDs. Here, we review gene editing tools based on CRISPR-Cas9 technology that have been used in vivo and the recent first-in-human application of CRISPR-Cas9 in an IRD.


Asunto(s)
Edición Génica , Distrofias Retinianas , Sistemas CRISPR-Cas/genética , Terapia Genética , Humanos , Distrofias Retinianas/genética , Distrofias Retinianas/terapia
15.
Mol Ther Methods Clin Dev ; 24: 306-316, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35229004

RESUMEN

Positive clinical outcomes in adeno-associated virus (AAV)-mediated retinal gene therapy have often been attributed to the low immunogenicity of AAVs and immune privilege of the eye. However, several recent studies have shown potential for inflammatory responses. The current understanding of the factors contributing to inflammation, such as the pre-existence of serum antibodies against AAVs and their contribution to increases in antibody levels post-injection, is incomplete. The parameters that regulate the generation of new antibodies in response to the AAV capsid or transgene after intraocular injections are also insufficiently described. This study is a retrospective analysis of the pre-existing serum antibodies in correlation with changes in antibody levels after intraocular injections of AAV in non-human primates (NHPs) of the species Macaca fascicularis. In NHP serums, we analyzed the binding antibody (BAB) levels and a subset of these called neutralizing antibodies (NABs) that impede AAV transduction. We observed significantly higher pre-existing serum BABs against AAV8 compared with other serotypes and a dose-dependent increase in BABs and NABs in the serums collected post-injection, irrespective of the serotype or the mode of injection. Lastly, we were able to demonstrate a correlation between the serum BAB levels with clinical grading of inflammation and levels of transgene expression.

16.
Prog Retin Eye Res ; 86: 100975, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34058340

RESUMEN

Inherited and age-related retinal degeneration is the hallmark of a large group of heterogeneous diseases and is the main cause of untreatable blindness today. Genetic factors play a major pathogenic role in retinal degenerations for both monogenic diseases (such as retinitis pigmentosa) and complex diseases with established genetic risk factors (such as age-related macular degeneration). Progress in genotyping techniques and back of the eye imaging are completing our understanding of these diseases and their manifestations in patient populations suffering from retinal degenerations. It is clear that whatever the genetic cause, the majority of vision loss in retinal diseases results from the loss of photoreceptor function. The timing and circumstances surrounding the loss of photoreceptor function determine the adequate therapeutic approach to use for each patient. Among such approaches, gene therapy is rapidly becoming a therapeutic reality applicable in the clinic. This massive move from laboratory work towards clinical application has been propelled by the advances in our understanding of disease genetics and mechanisms, gene delivery vectors, gene editing systems, and compensatory strategies for loss of photoreceptor function. Here, we provide an overview of existing modalities of retinal gene therapy and their relevance based on the needs of patient populations suffering from inherited retinal degenerations.


Asunto(s)
Degeneración Macular , Degeneración Retiniana , Retinitis Pigmentosa , Terapia Genética , Humanos , Retina , Degeneración Retiniana/genética , Degeneración Retiniana/terapia
17.
Redox Biol ; 48: 102198, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34856436

RESUMEN

The nucleoredoxin gene NXNL2 encodes for two products through alternative splicing, rod-derived cone viability factor-2 (RdCVF2) that mediates neuronal survival and the thioredoxin-related protein (RdCVF2L), an enzyme that regulates the phosphorylation of TAU. To investigate the link between NXNL2 and tauopathies, we studied the Nxnl2 knockout mouse (Nxnl2-/-). We established the expression pattern of the Nxnl2 gene in the brain using a Nxnl2 reporter mouse line, and characterized the behavior of the Nxnl2-/- mouse at 2 months of age. Additionally, long term potentiation and metabolomic from hippocampal specimens were collected at 2 months of age. We studied TAU oligomerization, phosphorylation and aggregation in Nxnl2-/- brain at 18 months of age. Finally, newborn Nxnl2-/- mice were treated with adeno-associated viral vectors encoding for RdCVF2, RdCVF2L or both and measured the effect of this therapy on long-term potential, glucose metabolism and late-onset tauopathy. Nxnl2-/- mice at 2 months of age showed severe behavioral deficiency in fear, pain sensitivity, coordination, learning and memory. The Nxnl2-/- also showed deficits in long-term potentiation, demonstrating that the Nxnl2 gene is involved in regulating brain functions. Dual delivery of RdCVF2 and RdCVF2L in newborn Nxnl2-/- mice fully correct long-term potentiation through their synergistic action. The expression pattern of the Nxnl2 gene in the brain shows a predominant expression in circumventricular organs, such as the area postrema. Glucose metabolism of the hippocampus of Nxnl2-/- mice at 2 months of age was reduced, and was not corrected by gene therapy. At 18-month-old Nxnl2-/- mice showed brain stigmas of tauopathy, such as oligomerization, phosphorylation and aggregation of TAU. This late-onset tauopathy can be prevented, albeit with modest efficacy, by recombinant AAVs administrated to newborn mice. The Nxnl2-/- mice have memory dysfunction at 2-months that resembles mild-cognitive impairment and at 18-months exhibit tauopathy, resembling to the progression of Alzheimer's disease. We propose the Nxnl2-/- mouse is a model to study multistage aged related neurodegenerative diseases. The NXNL2 metabolic and redox signaling is a new area of therapeutic research in neurodegenerative diseases.

18.
Front Genome Ed ; 3: 737632, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34778871

RESUMEN

Blindness and deafness are the most frequent sensory disorders in humans. Whatever their cause - genetic, environmental, or due to toxic agents, or aging - the deterioration of these senses is often linked to irreversible damage to the light-sensing photoreceptor cells (blindness) and/or the mechanosensitive hair cells (deafness). Efforts are increasingly focused on preventing disease progression by correcting or replacing the blindness and deafness-causal pathogenic alleles. In recent years, gene replacement therapies for rare monogenic disorders of the retina have given positive results, leading to the marketing of the first gene therapy product for a form of childhood hereditary blindness. Promising results, with a partial restoration of auditory function, have also been reported in preclinical models of human deafness. Silencing approaches, including antisense oligonucleotides, adeno-associated virus (AAV)-mediated microRNA delivery, and genome-editing approaches have also been applied to various genetic forms of blindness and deafness The discovery of new DNA- and RNA-based CRISPR/Cas nucleases, and the new generations of base, prime, and RNA editors offers new possibilities for directly repairing point mutations and therapeutically restoring gene function. Thanks to easy access and immune-privilege status of self-contained compartments, the eye and the ear continue to be at the forefront of developing therapies for genetic diseases. Here, we review the ongoing applications and achievements of this new class of emerging therapeutics in the sensory organs of vision and hearing, highlighting the challenges ahead and the solutions to be overcome for their successful therapeutic application in vivo.

19.
Nat Commun ; 12(1): 6945, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836948

RESUMEN

Long-term exposure to nicotine alters brain circuits and induces profound changes in decision-making strategies, affecting behaviors both related and unrelated to drug seeking and consumption. Using an intracranial self-stimulation reward-based foraging task, we investigated in mice the impact of chronic nicotine on midbrain dopamine neuron activity and its consequence on the trade-off between exploitation and exploration. Model-based and archetypal analysis revealed substantial inter-individual variability in decision-making strategies, with mice passively exposed to nicotine shifting toward a more exploitative profile compared to non-exposed animals. We then mimicked the effect of chronic nicotine on the tonic activity of dopamine neurons using optogenetics, and found that photo-stimulated mice adopted a behavioral phenotype similar to that of mice exposed to chronic nicotine. Our results reveal a key role of tonic midbrain dopamine in the exploration/exploitation trade-off and highlight a potential mechanism by which nicotine affects the exploration/exploitation balance and decision-making.


Asunto(s)
Conducta Exploratoria/efectos de los fármacos , Mesencéfalo/efectos de los fármacos , Nicotina/efectos adversos , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Conducta Exploratoria/fisiología , Masculino , Mesencéfalo/citología , Mesencéfalo/metabolismo , Ratones , Modelos Animales , Nicotina/administración & dosificación , Optogenética , Prejuicio , Recompensa , Autoadministración , Técnicas Estereotáxicas
20.
Mol Ther Methods Clin Dev ; 22: 15-25, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34401402

RESUMEN

Complete congenital stationary night blindness (cCSNB) due to mutations in TRPM1, GRM6, GPR179, NYX, or leucine-rich repeat immunoglobulin-like transmembrane domain 3 (LRIT3) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. Since the disease is non-degenerative and stable, treatment could theoretically be administrated at any time in life, making it a promising target for gene therapy. Until now, adeno-associated virus (AAV)-mediated therapies lead to significant functional improvements only in newborn cCSNB mice. Here we aimed to restore protein localization and function in adult Lrit3 -/ - mice. LRIT3 localizes in the outer plexiform layer and is crucial for TRPM1 localization at the dendritic tips of ON-BCs and the electroretinogram (ERG)-b-wave. AAV2-7m8-Lrit3 intravitreal injections were performed targeting either ON-BCs, photoreceptors (PRs), or both. Protein localization of LRIT3 and TRPM1 at the rod-to-rod BC synapse, functional rescue of scotopic responses, and ON-responses detection at the ganglion cell level were achieved in a few mice when ON-BCs alone or both PRs and ON-BCs, were targeted. More importantly, a significant number of treated adult Lrit3 -/- mice revealed an ERG b-wave recovery under scotopic conditions, improved optomotor responses, and on-time ON-responses at the ganglion cell level when PRs were targeted. Functional rescue was maintained for at least 4 months after treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...